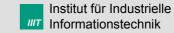


14. Detektion

SS 2015

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

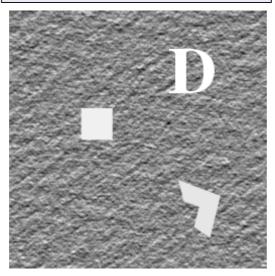


14. Detektion

Ziel: Detektion von Objekten oder Defekten und Feststellung ihrer Lage

 \blacksquare Einfaches Modell: Objekte $o_i(\mathbf{x})$ sind einem Hintergrund $h(\mathbf{x})$ überlagert

$$g(\mathbf{x}) = \sum_{i} c_i \cdot o_i(\mathbf{x} - \mathbf{x}_i) + h(\mathbf{x})$$



14.1 Detektion bekannter Objekte mittels linearer Filter

Lineares Detektionsfilter (Impulsantwort $v(\mathbf{x})$):

$$k(\mathbf{x}) = g(\mathbf{x}) ** v(\mathbf{x})$$

 $k(\mathbf{x})$ soll an den Orten x. Extremwerte zeigen

	Wichtige Fälle:	Objekte $o_i(\mathbf{x})$ bekannt	Objekte (Defekte) unbekannt
	Hintergrund $r(\mathbf{x})$ • schwach stationär (stochastischer Prozess) • AKF $r_{\mathrm{rr}}(\tau)$ bekannt	Matched-Filter: Detektionsfilter mit optimalem SNR	Suche nach signifikanten lokalen Abweichungen von den Hintergrund- eigenschaften → z. B. Prädiktionsfehlerfilter
	Hintergrund unbekannt	z. B. • Korrelationsfilter • Phase Only Filter (POF) • Inverses Filter	Detektion lokaler Texturinhomogenitäten → Homogenitätstests

14.1.1 Unbekannter Hintergrund

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

Institut für Industrielle

Informationstechnik

Objekt $o(\mathbf{x})$ bekannt (deterministisches Signal), Hintergrund unbekannt:

$$g(\mathbf{x}) = c o(\mathbf{x} - \mathbf{x}_0) + h(\mathbf{x}) = o(\mathbf{x}) ** c \delta(\mathbf{x} - \mathbf{x}_0) + h(\mathbf{x})$$

$$G(\mathbf{f}) = O(\mathbf{f}) c e^{-j2\pi \mathbf{f}^T \mathbf{x}_0} + H(\mathbf{f})$$

- Idee: KKF von $o(\mathbf{x})$ und $o(\mathbf{x} \mathbf{x}_0)$: $\int \int o(\mathbf{x}) o(\mathbf{x} + \boldsymbol{\tau} \mathbf{x}_0) d\mathbf{x}$ wird maximal bei $m{ au} = \mathbf{x}_0 \quad o \quad g(\mathbf{x}) ** o(-\mathbf{x}) : \mathsf{Maximum} \; \mathsf{bei} \; \mathbf{x} = \mathbf{x}_0$

$$ightarrow$$
 Korrelationsfilter $v(\mathbf{x}) = o(-\mathbf{x}) \quad \hookrightarrow \quad V(\mathbf{f}) = O^*(\mathbf{f})$

Verallgemeinerung:

$$O(\mathbf{f}) = |O(\mathbf{f})| \cdot e^{j \angle O(\mathbf{f})}$$

$$V_q(\mathbf{f}) := |O(\mathbf{f})|^q \cdot e^{-j \angle O(\mathbf{f})} \qquad q \in [-1, 1]$$

Verallgemeinerung heißt Fractional Power Filter (FPF)

SS 2015

14.1.1 Unbekannter Hintergrund

Spezialfälle:

$$q = -1$$
: $V(\mathbf{f}) = O^{-1}(\mathbf{f})$

Inverses Filter zur Rekonstruktion von $c \ \delta(\mathbf{x} - \mathbf{x}_0) \rightarrow \text{sehr}$ schmaler Detektionspeak

Nullstellen von $O(\mathbf{f})$

→ extreme Rauschverstärkung

$$\text{besser:} \quad V(\mathbf{f}) = \frac{O^*(\mathbf{f})}{|O(\mathbf{f})|^2 + \varepsilon}$$

$$q = 0$$
 : $V(\mathbf{f}) = e^{-j \angle O(\mathbf{f})}$

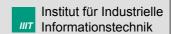
POF (*Phase Only Filter*): interessant für optische Realisierung, da kein Lichtverlust

$$q = 1$$
 : Korrelationsfilter

Optimalfilter (Matched-Filter), falls $h(\mathbf{x})$ = weißes Rauschen

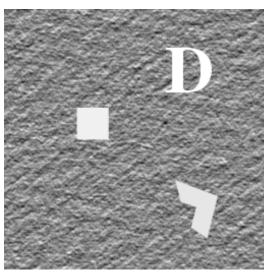
5 SS 201

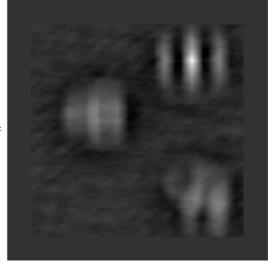
Prof. Dr.-Ing. F. Puente León – Bildverarbeitung



14.1.1 Unbekannter Hintergrund

Beispiel 14.1: Objektdetektion mittels Korrelationsfilter

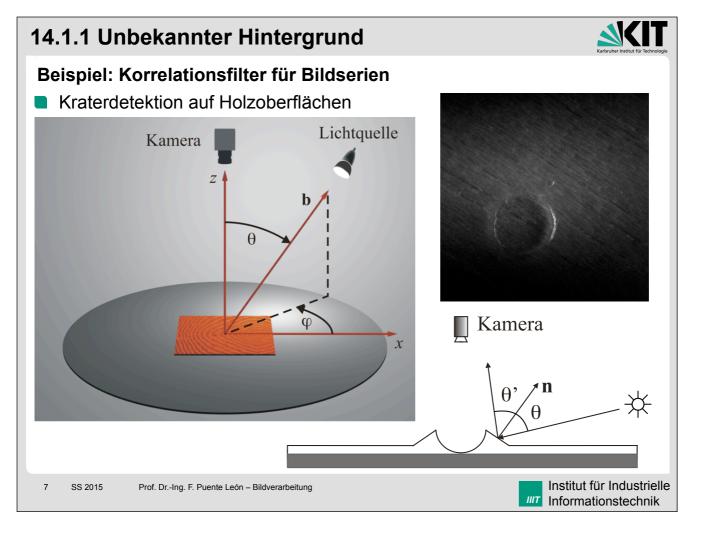


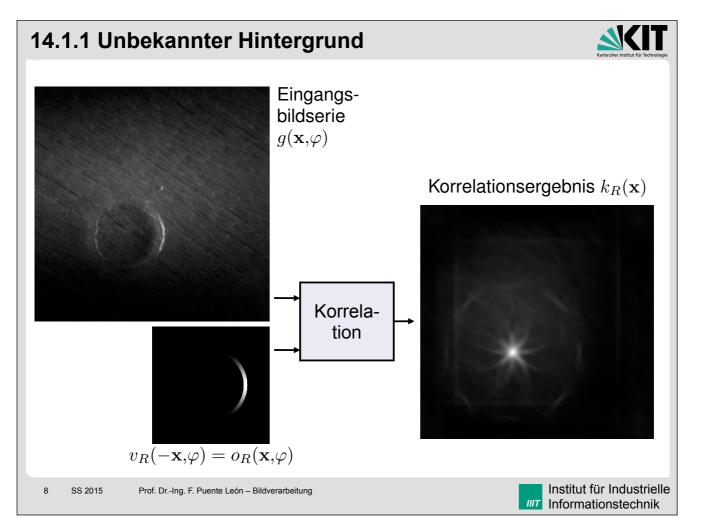


Eingangsbild $g(\mathbf{x})$

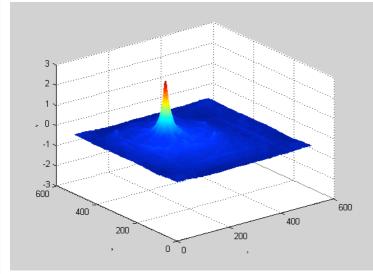
Impulsantwort Korrelationsergebnis $k(\mathbf{n})$ $v(\mathbf{x}) = o(-\mathbf{x})$

 Korrelationsansätze sind empfindlich gegen Rotation, Skalierung und Verzerrung der gesuchten, bekannten Objekte





14.1.1 Unbekannter Hintergrund

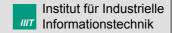


Ergebnis der Korrelationsfilterung

Detektionsergebnisse

9 SS 2015

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung



14.1.2 Weißes Rauschen als Hintergrund

■ Annahme: Hintergrund h(x) = weißes Rauschen, $S_{hh}(f) \equiv N_{h}$

$$\mathtt{k}(\mathbf{x}) = \mathtt{g}(\mathbf{x}) ** v(\mathbf{x}) = \underbrace{c\,o(\mathbf{x} - \mathbf{x}_0) ** v(\mathbf{x})}_{\mathsf{Nutzsignal}} + \underbrace{\mathtt{h}(\mathbf{x}) ** v(\mathbf{x})}_{\mathsf{St\"{o}rsignal}}$$

$$\mathrm{SNR} = \frac{P_1}{P_2} = \frac{\mathrm{Nutzsignalleistung}}{\mathrm{St\"{o}rsignalleistung}}$$

Nutzsignal:

$$\begin{split} P_1 := & \left| c \, o(\mathbf{x} - \mathbf{x}_0) ** v(\mathbf{x}) \right|^2 \Big|_{\mathbf{x} = \mathbf{x}_0} = c^2 \, \left| o(\mathbf{x}) ** v(\mathbf{x}) \right|^2 \Big|_{\mathbf{x} = \mathbf{0}} \\ = & c^2 \left| \iint\limits_{-\infty}^{\infty} O(\mathbf{f}) \, V(\mathbf{f}) \, \mathrm{d}\mathbf{f} \right|^2 \quad \text{lokale Nutzsignallieistung am Ort } \mathbf{x}_0 \end{split}$$

Störsignal:

$$P_2 = N_{\rm h} \int_{-\infty}^{\infty} |V(\mathbf{f})|^2 d\mathbf{f}$$

mittlere Störsignalleistung

14.1.2 Weißes Rauschen als Hintergrund

- **Ziel**: SNR am Ort x₀ maximieren
- Es gilt:

$$\left| \iint\limits_{-\infty}^{\infty} O(\mathbf{f}) \, V(\mathbf{f}) \, \mathrm{d}\mathbf{f} \right|^2 \leq \iint\limits_{-\infty}^{\infty} |O(\mathbf{f})|^2 \, \mathrm{d}\mathbf{f} \cdot \iint\limits_{-\infty}^{\infty} |V(\mathbf{f})|^2 \, \mathrm{d}\mathbf{f} \quad \text{Schwarz'sche Ungleichung}$$

- Linke Seite maximal (d. h. Ungleichung \rightarrow Gleichung), falls $V(\mathbf{f}) \propto O^*(\mathbf{f})$
- Bei festem P_2 wird SNR maximal für

$$V(\mathbf{f}) = \mathrm{const.} \cdot O^*(\mathbf{f})$$

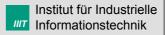
$$v(\mathbf{x}) = \mathrm{const.} \cdot o(-\mathbf{x}) \longrightarrow \mathsf{Korrelationsfilter}$$

"Matched-Filter"

Optimalfilter im Sinne maximalen SNRs an der Stelle $x = x_0$

SS 2015

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung



14.1.3 Korreliertes Rauschen als Hintergrund

Verallgemeinerung: h(x) = korreliertes, schwach stationäres Rauschen

$$g(\mathbf{x}) \longrightarrow v(\mathbf{x}) \qquad \tilde{v}(\mathbf{x}) \qquad \mathbf{k}(\mathbf{x})$$

$$\gamma(\mathbf{x}) := g(\mathbf{x}) ** w(\mathbf{x}) = c \underbrace{o(\mathbf{x} - \mathbf{x}_0) ** w(\mathbf{x})}_{=: \tilde{o}(\mathbf{x})} + \underbrace{h(\mathbf{x}) ** w(\mathbf{x})}_{=: \rho(\mathbf{x})}$$

Ansatz: $\rho(x)$ soll weißes Rauschen sein

$$S_{\rho\rho}(\mathbf{f}) = |W(\mathbf{f})|^2 S_{hh}(\mathbf{f}) \stackrel{!}{\equiv} \text{const.}$$

$$\Rightarrow \boxed{|W(\mathbf{f})| = rac{1}{\sqrt{S_{ ext{hh}}(\mathbf{f})}}}$$
 "Whitening"-Filter

→ Problem auf den Fall weißes Rauschens zurückgeführt

14.1.3 Korreliertes Rauschen als Hintergrund

Durch das Whitening entsteht das modifizierte Nutzsignal $\tilde{o}(\mathbf{x})$ mit überlagertem weißem Rauschen, das nun mit einem Matched-Filter detektiert werden kann:

$$\tilde{v}(\mathbf{x}) = \text{const.} \cdot \tilde{o}(-\mathbf{x}) \quad \mathsf{mit} \quad \tilde{o}(\mathbf{x}) = o(\mathbf{x}) ** w(\mathbf{x})$$

Somit resultiert für das Detektionsfilter insgesamt:

$$v(\mathbf{x}) = \text{const.} \cdot \tilde{o}(-\mathbf{x}) ** w(\mathbf{x}) = \text{const.} \cdot o(-\mathbf{x}) ** w(-\mathbf{x}) ** w(\mathbf{x})$$

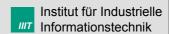
$$V(\mathbf{f}) = \text{const.} \cdot O^*(\mathbf{f}) |W(\mathbf{f})|^2 = \text{const.} \cdot \frac{O^*(\mathbf{f})}{S_{hh}(\mathbf{f})}$$

Filter öffnet für spektrale Komponenten von $o(\mathbf{x})$ und schließt für starke spektrale Komponenten von h(x)

"Matched-Filter für farbiges Rauschen"

SS 2015

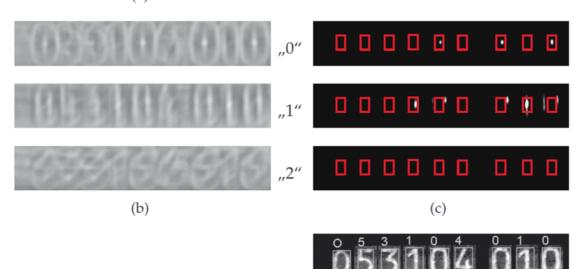
Prof. Dr.-Ing. F. Puente León – Bildverarbeitung



14.1.4 Diskret formuliertes Matched-Filter

Beispiel 14.2: Zeichenerkennung

(a)



Institut für Industrielle

Informationstechnik

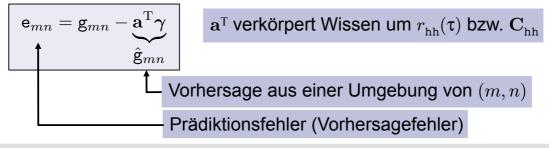
14.2 Detektion unbekannter Objekte (Defekte)

- o(x): stochastischer Prozess, Eigenschaften unbekannt
- $\mathbf{h}(\mathbf{x})$: schwach stationärer stochastischer Prozess; AKF $r_{\mathrm{hh}}(\tau)$ bekannt
- Typische Situation f
 ür Defektdetektion in bekannten Texturen

Vorgehensweise:

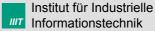
- Suche nach signifikanten lokalen Abweichungen von den statistischen Eigenschaften von g(x) durch selektive Unterdrückung von h(x)
 - → Hervorhebung der Defekte

Beispiel 14.3: Prädiktionsfehlerfilter auf Basis eines AR-Modells



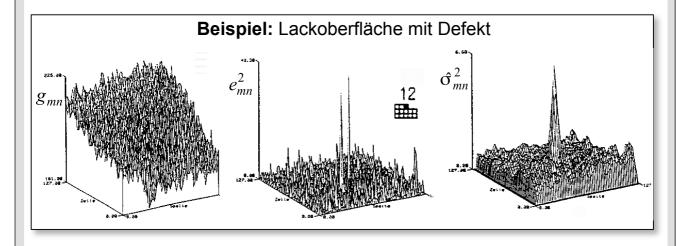
15 SS 2015

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung



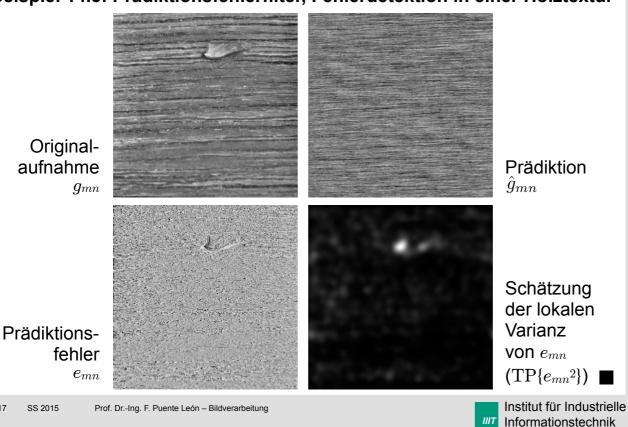
14.2 Detektion unbekannter Objekte (Defekte)

- An lokalen Abweichungen des Bildsignals \mathbf{g}_{mn} vom modellierten Hintergrund \mathbf{h}_{mn} hat der Prädiktionsfehler \mathbf{e}_{mn} eine hohe lokale Leistung
 - $ightarrow \sigma_{mn}^2 = \mathrm{Var}\{\mathtt{e}_{mn}\}$ hat lokale Maxima bei Defekten
- Schätzung durch Tiefpassfilterung des Prädiktionsfehlerquadrats



14.2 Detektion unbekannter Objekte (Defekte)

Beispiel 14.3: Prädiktionsfehlerfilter, Fehlerdetektion in einer Holztextur



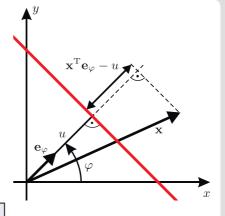
14.3 Geradendetektion

- Geraden sind wichtige Bestandteile zahlreicher Bilder
- Ziel: Detektion und Lagebestimmung

14.3.1 Die Radon-Transformation

Definition:

$$\check{g}(u,\varphi) = \Re\{g(\mathbf{x})\} := \iint\limits_{-\infty}^{\infty} g(\mathbf{x}) \ \underbrace{\delta(\mathbf{x}^{\mathrm{T}}\mathbf{e}_{\varphi} - u)}_{\pmb{\delta}\text{-Gerade}} \mathrm{d}\mathbf{x}$$



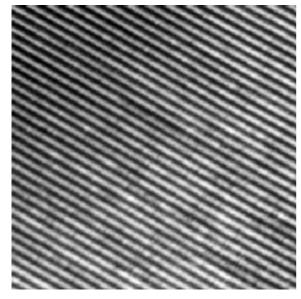
u: Urpsrungsabstand

 \mathbf{e}_{φ} : Normalenvektor

- Die Radon-Transformation entwickelt $g(\mathbf{x})$ nach δ -Geraden
- Für $\varphi=\varphi_0$ fest, u variabel ist \check{g} Parallelprojektion von $g(\mathbf{x})$ senkrecht zu \mathbf{e}_{φ}
- Enthält $g(\mathbf{x})$ eine δ-Gerade $\delta(\mathbf{x}^{\mathrm{T}}\mathbf{e}_{\alpha} d)$, so zeigt $\check{g}(u, \varphi)$ ein ausgeprägtes Maximum bei $\varphi = \alpha, u = d$

14.3.1 Die Radon-Transformation

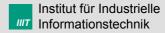
Beispiel 14.4: Radon-Transformation einer Riefentextur



Stoßtextur

Radon-Transformierte

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung



14.3.1 Die Radon-Transformation

Das Zentralschnitt-Theorem

$$\varphi = 0^{\circ} \Rightarrow u = x: \qquad \check{g}(x,0) = \int g(\mathbf{x}) \, \mathrm{d}y = \iint g(\mathbf{x}) \, \delta(x - u) \, \mathrm{d}\mathbf{x}$$

$$= g(\mathbf{x}) ** \delta(x) = g(\mathbf{x}) ** \delta(\mathbf{x}^{\mathrm{T}} \mathbf{e}_{x})$$

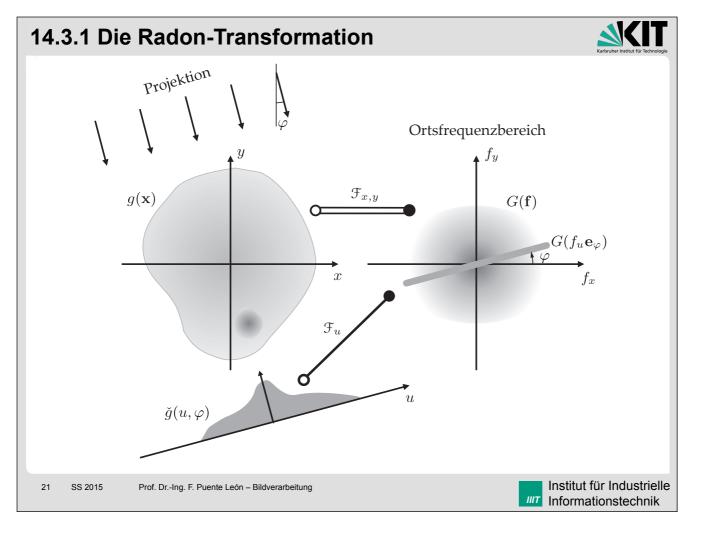
$$G(\mathbf{f}) \cdot \delta(f_{y}) = G(\mathbf{f}) \cdot \delta(\mathbf{f}^{\mathrm{T}} \mathbf{e}_{y})$$

Ausblendung der Spektralwerte auf einer Ursprungsgeraden senkrecht zur Projektionsrichtung

- Drehung um $\varphi \neq 0$: $\mathbf{e}_x \to \mathbf{e}_{\varphi}$, $\mathbf{e}_y \to \mathbf{e}_{\varphi \perp} = (-\sin \varphi, \cos \varphi)^T$
- Drehung von $\delta(\mathbf{x}^T\mathbf{e}_x)$ um $\varphi \neq 0$ bewirkt ebensolche von $\delta(\mathbf{f}^T\mathbf{e}_y)$

$$\mathcal{F}_{u}\{\check{g}(u,\varphi)\} = \int_{-\infty}^{\infty} \check{g}(u,\varphi) e^{-j2\pi f_{u}u} du = G(f_{u} \mathbf{e}_{\varphi})$$

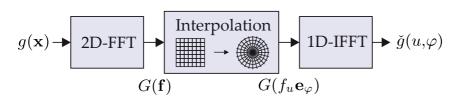
Zentralschnitt-**Theorem**



14.3.1 Die Radon-Transformation

Effiziente Berechnung der Radon-Transformation

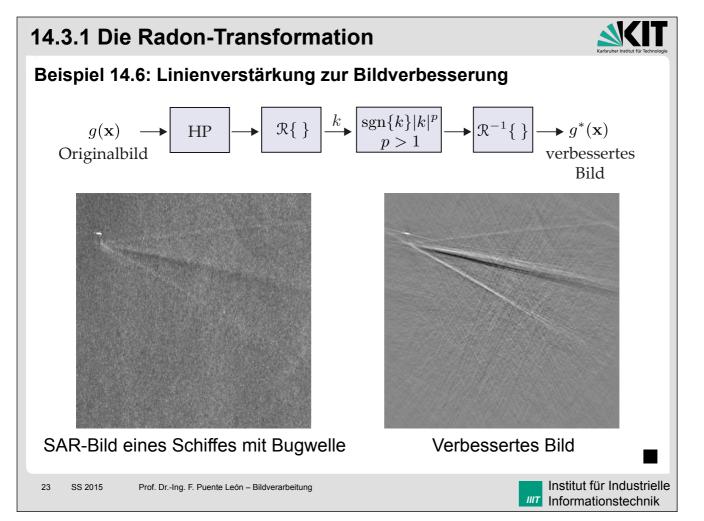
- 2D-DFT (FFT)
- Übergang zu Polarkoordinaten f_u , ϕ (Interpolation notwendig)
- Zeilenweise 1D-DFT $^{-1}$ (FFT $^{-1}$) bezüglich f_u

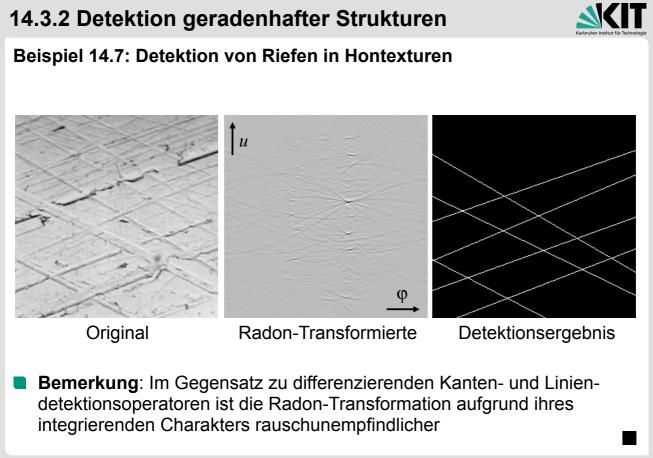


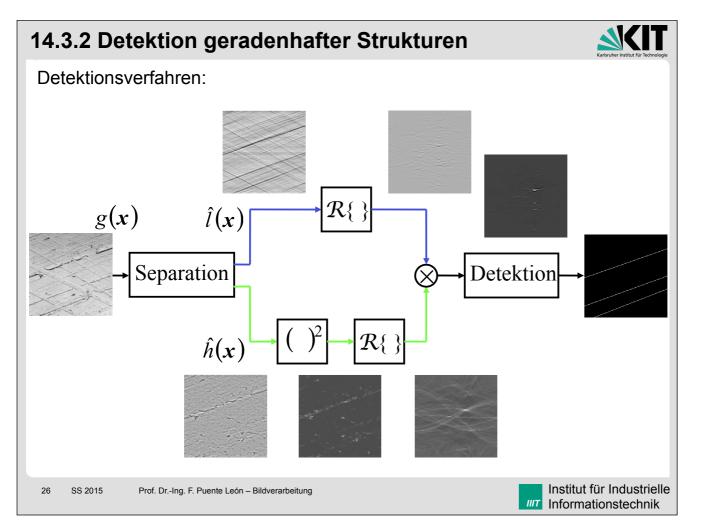
Aufwand

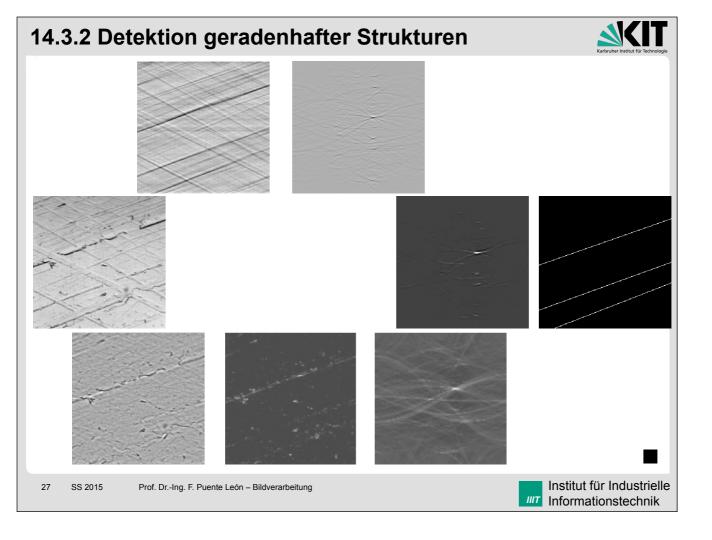
- Radon-Integral direkt: $O(N^3)$
- Via Zentralschnitt-Theorem: $O(N^2 \operatorname{ld} N)$

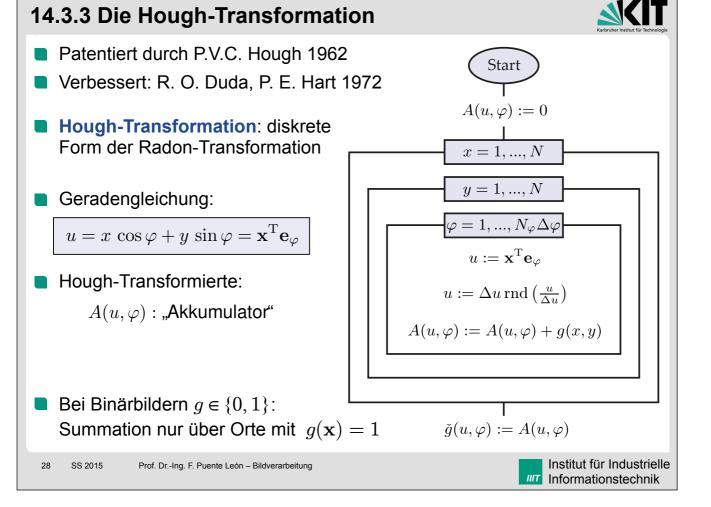
Bildgröße $N \times N$	256×256	512×512	$\boxed{1024 \times 1024}$
$\frac{\text{Aufwand}_{\text{Radon}} = O(N^3)}{\text{Aufwand}_{\text{ZST}} = O(N^2 \text{ld}N)}$	≈ 10	≈ 18	≈ 32





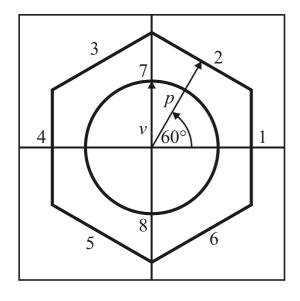


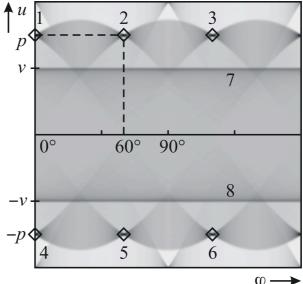




14.3.3 Die Hough-Transformation

Beispiel: Hough-Transformation eines binären Bildes





Binäres Testbild

Hough-Transformierte

29 SS 2015

Prof. Dr.-Ing. F. Puente León – Bildverarbeitung

Institut für Industrielle Informationstechnik